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Abstract

Extensive exploration of simulation models comes at a high computational cost, all the
more when the model involves a lot of parameters. Economists usually rely on random ex-
plorations, such as Monte Carlo simulations, and basic econometric modeling to approximate
the properties of computational models. This paper aims to provide guidelines for the use
of a much more efficient method that combines a parsimonious sampling of the parameter
space using a specific design of experiments (DoE), with a well-suited metamodeling method
first developed in geostatistics: kriging. We illustrate these guidelines by following them in
the analysis of two simple and well known economic models: Nelson and Winter’s industrial
dynamics model, and Cournot oligopoly with learning firms. In each case, we show that our
DoE experiments can catch the main effects of the parameters on the models’ dynamics with
a much lower number of simulations than the Monte-Carlo sampling (e.g. 85 simulations
instead of 2000 in the first case). In the analysis of the second model, we also introduce
supplementary numerical tools that may be combined with this method, for characterizing
configurations complying with a specific criterion (social optimal, replication of stylized facts,
ect.). Our appendix gives an example of the R-project code that can be used to apply this
method on other models, in order to encourage other researchers to quickly test this approach
on their models.

Key-words – Computational Economics; Exploration of Agent-Based Models; Design of
Experiments; Meta-modeling.

JEL codes – C61; C63; C80; C90.

1 Introduction
Agent-based computational models (ABM hereafter) have become now a widely used tool
in economic research. They have been notably applied to the investigation of markets, social
dynamics, technological competition and learning dynamics, industrial dynamics and firms
strategies, exchange or stock markets, see the surveys collected in Tesfatsion & Judd (2006)
and Miller & Page (2007). Those models are highly non-linear, and generally do not allow for
the derivation of analytical solutions. Intensive sensitivity analyses are required to investigate
the behavior of those models, in order to understand their properties, to discriminate be-
tween key parameters and the others, to select optimal configurations regarding a predefined
criterion, etc. However, as soon as the model involves many parameters, with wide variation
domains, the computational cost of those analyses dramatically increases, and may quickly
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become prohibitive. For example, with 10 parameters, each of them having 5 potential levels,
we need almost 10 millions of simulation runs to cover all configurations, and even more if
the model is not deterministic, and involves replications with different random number gen-
erator (RNG) seeds. A very common method that is used in economics for this sensitivity
analysis is the Monte-Carlo approach. This method consists in launching a high number of
simulation runs (typically several thousands), with randomly drawn parameter values and
initial conditions, to obtain a representative sample of the mapping between the parameter
values and the model’s behavior. Standard variance analysis and econometric methods are
then applied to determine how parameter values influence the simulation results.

In this paper, we argue that the use of a specific design of experiments (hereafter, DoE),
and an estimation model adapted to such a DoE for analysing the results is a much more
efficient way of exploring computational models. By efficient, we mean that much less simula-
tions than under a Monte Carlo procedure are needed to obtain a picture of the relationships
between parameter values and model’s outcomes, and this picture is more precise than the one
coming out from standard econometric models. Basically, DoE aims to minimize the sample
size of parameter configurations under the constraint of their representativeness. The DoE
that we introduce here is called Nearly Orthogonal Latin Hypercube (NOLH) sampling.
Based on the data collected from the model using this DoE, an appropriate meta-model is
estimated, in order to approximate the true model, which connects the parameters to the
variables of interest. The meta-model that we introduce is inspired by geostatistics and it
is called kriging. The combination of this DoE and this meta-model is very interesting
because we obtain a faithful vision of the model’s behavior, and of its sensitivity to different
parameter values using a considerably smaller set of simulation runs, as we will show below,
in the example applications.

Admittedly, other alternatives to Monte Carlo sampling with a fixed number of simula-
tions have been contemplated in the literature to address execution time cost of computer
models. Sequential Monte Carlo procedure is one of the main ones.1: this method chooses
not to set the number of simulations beforehand, and runs the simulations until the results
fulfill a given criterion. To that respect, Silva et al. (2009) provide a simple rule of thumb to
stop as early as possible the simulations, and obtain results as reliable as those from tradi-
tional Monte Carlo procedures with preset number of simulations2. Sequential Monte Carlo
sampling can with no doubt address the issue of statistical tests such as Student tests (of
the null hypothesis that the value of the variable under interest is higher, equal or less that
a given threshold) in computationally costly models, as rejection of the null hypothesis can
be stated at each simulation step. However, it does not appear suited for conducting sensi-
tivity analyses in multi-dimensional models. In that case, an analysis of variance (ANOVA)
is typically performed to establish whether the factors significantly influence the variable
under interest. This requires a full sample of runs in order to compute a F-test (of the null
hypothesis that the variable has the same value across all the possible values of the factor)
for each factor, and possibly each two- or higher-order interaction.

Another alternative to traditional Monte Carlo procedures to reduce the number of simu-
lations is importance sampling (see Booth & Butler (1999)). A main drawback of traditional
Monte Carlo sampling is typically that many sample points are redundant by falling into
regions of the parameter space containing very little informative value, because sampling
is performed from a uniform distribution (i.e. each configuration of factors has an equal

1See, notably, Besag & Clifford (1991). Applications in economics of this method mostly concern Bayesian
estimation of models, see, for instance, Herbst & Schorfheide (2013).

2More precisely, consider that the null hypothesis is rejected if the observed values of the variable under interest
are higher than a given value, at a frequency higher than a given confidence threshold α ≤ 1. Running simulations
until one obtains n · α ≤ n observations leading to the rejection of the null hypothesis is shown to have the same
power as running n simulations, and assessing only afterwards whether the null hypothesis has to be rejected or
not. The number of simulations can hence be reduced by a factor up to 1

α . A small amount of power can further
be traded with a larger decrease in the number of simulations, and Silva et al. (2009) provide related estimations
of the power loss.

2



probability to be sampled). Importance sampling allows to address this drawback. This
method performs sampling according to a specific distribution, which is selected to sample
more frequently parameter values which are expected to have more impact on the variable
under interest, while not excluding areas of the parameters’ variation domain. Provided that
some prior information is available regarding where the regions of high influence lie over the
factors’ variation domain, this sampling method allows to eliminate a large amount of the
simulations. However, importance sampling becomes intractable when dealing with high-
dimensional variation domains, while, as just mentioned, our proposed method can address
sensitivity analysis of models containing up to 29 factors, and does not require any prior
information on factor’s influence.

We consider that the method we propose – the use of kriging meta-modeling based on an
appropriate DoE – is better adapted to the analysis of computer experiments with ABMs.
Indeed, this method both drastically reduces the number of simulations to run, and makes
possible a high-dimensional sensitivity analysis: non-linear relations and interactions can
be significantly identified with only 17 simulations up to 7 factors, 33 simulations up to 11
factors, 65 simulations up to 16 factors, 129 simulations up to 22 factors and 257 up to
29 factors. Furthermore, this method provides the additional advantage of estimating the
response surface over the whole variation domain of the factors. This estimation is of special
interest when the purpose of the modeling exercise is to identify a factor configuration which
minimizes or maximizes the response value. In this paper, we illustrate such a use of the
meta-model within a Cournot oligopoly model.

The intuition behind our method, combining NOLH sampling and kriging meta-modeling,
may be conveyed using an illustrative simple example. Suppose that a mining company aims
to evaluate gold resources on a field3. A prospection of the entire area, or even a prospection
of a high number of locations over the field would be with no doubt extremely long and
costly. The company can only carry out a limited number of peripheral samples. The actual
ore resources over the entire field are then estimated from the values measured at those
sample points. Two issues arise here, one related to the sample selection, and one concerning
the estimation procedure. First, how many sample points should the company evaluate, and
where should the company arrange those points ? Second, what estimation procedure should
the company use to estimate gold resources over the whole field from the limited number
of sample data ? These two questions are related to each other. Indeed, the more accurate
the estimation model, the less sample points needed to obtain a reliable picture of the gold
coverage. The larger the sample data, the more precise the estimation of the resources. As
the evaluation of resources is costly, it is in the company’s interest to minimize the sample
size, while maximizing the chances of extracting useful information from the collected data
and, hence, obtaining an accurate estimation over the entire field. The company is clearly
facing a trade-off between the sample size and the accuracy of the resulting estimation.

2

4

1

3

5

A

6

Figure 1: Design of experiments and kriging meta-modeling: an illustrative introduction

To illustrate that trade-off, and how DoE and kriging meta-models provide an interesting

3Kriging models have been named after Danie G. Krige, a South African mining engineer who developed those
models to improve ore evaluation techniques at the Witwatersrand reef complex in South Africa, pioneering the
field of geostatistics, see Krige (1951). As for the statistical theory of DoE, it was developed in agriculture in the
1920’s, for real, non-simulated experiments, see Fisher (1935).
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way to handle it, suppose that the rectangle in Figure 1 represents the field, and points 1 to
6 stand for the six sample locations where gold resources have been evaluated.

First, it sounds intuitive to scatter the samples all over the field in order to obtain a
rough idea of the gold resources on all areas of the field, rather than selecting sample points
in a purely random manner. A DoE does allow to scatter a minimum number of sample
points over a given space, so that the representativeness of the obtained sample regarding
the whole space is ensured. Such a sampling is said to be parsimonious because it minimizes
the sample size.

Second, in order to estimate the gold resources, for instance at point A, given the data
collected at points 1 to 6, it sounds reasonable to adopt an estimation procedure which gives
more importance to sample 1 than to sample 2, as sample 2 is further from point A than
sample 1. Interpolation through kriging meta-models is based on such a principle: values
at non-sampled locations are interpolated by setting the relative weight of each sample data
according to the distance of the sample from the point to be estimated.

The same principle exactly applies to exploration of computer simulations. The field to
be prospected is the parameter space, which has as many dimensions as parameters. The
DoE allows to choose only a small subset of parameter values to be run and, based on the
model’s outcomes evaluated for those values, a kriging meta-model interpolates the model’s
behavior for unsampled parameter values. This method drastically reduces the number of
simulations to run, while giving a precise picture of the impact of parameter values on the
model. It is particularly appealing when performing sensitivity analyses of models which
involve a high computational cost, in the sense that running one single simulation takes
several minutes, or even several hours.

This method is very common in other scientific fields, such as industry, chemistry, elec-
tronic, biology, physics, computer science... (see for example Goupy & Creighton (2007)),
but is almost unknown in economics: to the best of our knowledge, the only applications are
Oeffner (2008), Yıldızoğlu et al. (2012) and Salle et al. (2012). This paper aims at providing
guidelines to apply this method to economic computational models. In order to do so, we use
DoE and kriging meta-modeling to explore the properties of two standard economic models,
namely the Nelson & Winter (1982) model and a Cournot oligopoly model, and contrast
the results with the ones obtained through Monte Carlo simulations and basic econometric
analysis. Our results can be stated as follows.

First, the kriging meta-model is able to account for the main effects of the parameters,
as well as their interactions, on the concentration of the industry in the Nelson & Winter
(1982) model with only 17 parameter configurations (replicated each five times), while a 2, 000
simulations Monte Carlo sampling, at least, is necessary for capturing the direct effects, and
the two-way interactions cannot be captured with less then 10, 000 simulations. Importantly,
the identified effects are in line with the ones discussed in Nelson & Winter (1982). A similar
exercise within the Cournot oligopoly model with learning firms shows that running only 33
experiments (replicated each 20 times) is enough to catch the determinants of the convergence
towards the Cournot equilibrium, while, again, at least 3800 Monte-Carlo experiments are
necessary to capture the direct effects, and 4600 simulations for capturing all effects. These
results clearly highlight the computational gain associated with the use of the NOLH DoE
and kriging meta-modeling, and show that no significant informational loss results from
the reduction of the number of simulations. Second, we show how a kriging meta-model
predicts the behavior of the model as a function of the critical parameters in a much more
accurate manner than a standard OLS regression model does. We further discuss a method to
identity the parameter configuration which minimizes the distance to the Cournot equilibrium
through the kriging meta-model, and provide the corresponding R-project (R Development
Core Team 2009) codes. This additional point turns out to be useful in many economic
simulation analyses, in which optimizing a specific criterion is the goal of the modeling
exercise.

The rest of the paper is organized as follows. Section 2 presents the mathematical founda-
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tions of the NOLH DoE and the kriging meta-modeling, Section 3 details the two applications
of this method and Section 4 concludes.

2 Method
This section presents the mathematical background of the kriging-based meta-modeling tech-
nique and the associated DoE, and highlights several potential pitfalls in the modeling choices
as well as the main available applications of this approach. For the sake of clarity, bold
mathematical expressions stand for multi-dimensional variables (i.e. vectors), while normal
characters stand for one-dimensional variable (i.e. scalars), and x indexes indicate values
observed at the sampled points using the DoE.

2.1 Preliminary definitions
Let x1, ..., xk be the k ≥ 1 parameters of the model. The parameters are called factors (or
inputs). The variation domain of each factor is the set of all possible values for this factor. Let
D ⊂ Rk be the experimental domain, i.e. the k-dimensional space of the variation domains
of the k factors. An experimental point (or point) xi = (x1,i, ..., xk,i) is a 1× k ∈ D vector,
which is a point of the experimental domain (a particular configuration of the factor values
in which x1 = x1,i, ..., xk = xk,i). The DoE is the n× k matrix of the n experimental points,
which are selected for the sample. Each column represents a factor and each row represents
an experimental point. The DoE is thus denoted by X ≡ (x1, ...,xi, ...,xn)′ ∈ Mn,k(R). An
experiment (or simulation) is a run of the model, with a particular parameter configuration
xi, i = 1, ..., n. Finally, let y : x = (x1, ..., xk) ∈ D ⊂ Rk → y(x) be the response variable,
i.e. the variable under interest.

DoE aims at choosing a minimal number n of points xi, i = 1, ..., n in order to approximate
the true model y by a kriging meta-model Y of it. As mentioned in the introduction, where
to arrange the sample points over the experimental domain is closely related to the choice
of the meta-model, i.e. the choice of the form of Y (see Wang & Shan (2007)). Two main
methods are available (see for example Jourdan (2005)): the first one relies on widely used
Ordinary Least Squares (OLS) regressions and is outlined in Sub-section 2.2; the second one
is based on kriging interpolation and requires specific properties of the DoE. This is reviewed
in Sub-section 2.3.

2.2 The classical approach
One can combine a classical DoE with the OLS estimation of a second-order polynomial model
(possibly including two-way interactions) in order to estimate the value of the response y at
any unsampled location x of the experimental domain:

Y (x) = β0 +
k∑
g=1

βgxg +

k∑
g=1

βgx
2
g +

k∑
g=1

∑
h>g

βg,hxgxh + ε (1)

where ε is a usual error term. Classical DoE are factorial type DoE (see for example Box
& Draper (1987)). They are very simple to generate and optimal for estimating models
of form (1). However, they put experimental points at the extremities of the experimental
domain (see Figure 2a). Consequently, they are not adapted if the response is irregular over
the domain. We should use these DoE only if the response is expected to be smooth on
the entire domain, or if we investigate only a restricted domain, on which we can locally
approximate the response with a smooth function. Nevertheless, Iman & Helton (1988) find
that this approach is useful for ranking the relative influence of the factors on the response,
even if model (1) is not able to adequately represent the complex response surface.
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(a) A classical DoE (b) A uniform DoE

Figure 2: Examples of DoE (3 factors, 8 points, source: Goupy & Creighton (2007))

2.3 The kriging-based approach
A more accurate meta-model Y over the entire experimental domain can be obtained through
the use of a spatial interpolation model, namely a kriging model4. It is particularly relevant
for the analysis of computer simulations, which produce non-linear dynamics and can be
highly sensitive to small changes in parameter values. In that case, the response is not
smooth over the experimental domain, and a meta-model accounting for that irregularity
should be preferred to the classical approach.

We start by discussing the statistical background of kriging meta-models, as it is useful
to understand the specific features of the associated DoE that these meta-models require.

2.3.1 Form of the meta-model

The response y can be predicted through the meta-model Y :

Y (x) = µ(x) + Z(x) (2)

where µ : x ∈ D ⊂ Rk → µ(x) ≡
∑l

j=1 βjfj(x) ∈ R, l > 0, is the global trend of the model,
composed by predetermined functions fj (possibly non-linear) and a vector β ≡ {βj}1,...,l of
coefficients, to be estimated. Z is a stochastic process, representing local deviations of the
model from the global trend µ (see Figure 3). The meta-model is said to be global, as it is
defined over the whole experimental domain D.

Most of the time, Z is assumed to be second-order stationary, with zero mean, and a
covariance given by C ≡ σ2R, with σ2 a scale parameter called the process variance. The
correlation function R is a n×n matrix, whose (i, j) element is corr (Z(xi), Z(xj)). Kriging
assumes that the closer the points xi and xj , the higher the correlation between Z(xi) and
Z(xj), and the higher the correlation between the responses y(xi) and y(xj). That is why
kriging is said to be a spatial estimator. This assumption translates into the form of the
correlation R. In practice, an exponential function is often used and the (i, j) element of R
is computed as:

corr (Z(xi), Z(xj)) = exp

− k∑
g=1

θg | xg,i − xg,j |

 (3)

where xg,i denotes the value of factor xg at the experimental point xi.
Let θ ≡ {θ1, ..., θk} be the 1× k vector of positive values quantifying the relative impor-

tance of the k factors on the response y. Element θg ≥ 0, g = 1, ..., k, measures the relative
importance of factor g. The higher θg, the lower the correlation between the responses evalu-
ated for close values of factor xg, and the smaller the importance of factor g on the response

4See, notably, Matheron (1963), Sacks et al. (1989), van Beers & Kleijnen (2004) and Roustant et al. (2010).
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Figure 3: Ordinary kriging meta-model: µ(x) = µ̄ (source: Jourdan (2005))

y (see van Beers & Kleijnen (2004, p. 145)). We note that the correlation between responses
does decrease as the distance between points increases, for any given value of θg.

The absolute value in (3), representing the distance between two points, can also be
replaced by the squared differences (xg,i − xg,j)

2 to obtain a smoother process (Gaussian
correlation).

2.3.2 Estimation of the meta-model

Parameters to be estimated are the l coefficients of vector β, the k coefficients of vector θ
and σ2, for a total of l+ k+ 1 parameters. The estimation of the kriging model involves two
steps (Sacks et al. (1989)).

First, we define Fx ≡ (f(x1), ..., f(xn))′ as the so-called n × l experimental matrix, f(x)
is the (1 × l) vector of the trend values at some point x, and yx is the (n × 1) vector of
the observed values of the response at the n points of the DoE. The l trend coefficients βj
(j = 1, ..., l) are estimated using generalized least squares (GLS)5:

β̂ = (F ′xC
−1Fx)−1F ′xC

−1yx

Let Υ(x) ≡ Y (x) − f(x)β̂ be the detrended process defined at any given point x of the
experimental domain, and Υx the (n × 1) vector of the values of the detrended process at

the n points of the DoE, i.e. Υx =
(
Y (x1)− f(x1)β̂, ..., Y (xn)− f(xn)β̂

)′
.

Second, residuals are interpolated, making abstraction of the trend. The best linear
unbiased predictor (BLUP) Υ̂ of Υ is obtained as a linear combination of the n observations
of Υ at the n points of the DoE, with weights λx = (λ(x1), ..., λ(xn))′. For any point x of
the experimental domain, the value of the detrended process Υ is therefore interpolated as
follows:

Υ̂(x) =

n∑
i=1

λ(xi)Υ(xi) = λ
′
xΥx

The mean squared error of the estimation given the weights λx equals:

MSE ≡ E
[(

Υ(x)− Υ̂(x)
)2]

= E

[(
Y (x)− f(x)β̂ − λ

′
xΥx

)2]
(4)

As the MSE is convex, minimizing it implies that the solution exists, is unique and is given
by:

λ∗x = R−1r(x)

where R is the correlation matrix previously introduced, and r(x) = R(x,xi)16i6n is the
(n×1) vector of the correlations between the interpolation at any point x of the experimental
domain, Y (x), and the values of Y at the sampled points (Y (x1), ..., Y (xn)).

5The estimation of the meta-model is actually done through feasible GLS as the covariance matrix C is unknown
and its parameters have to be estimated, see below.
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In expression (4), weights λx are now replaced by their optimal values λ∗x, and the values
of Υx by the actual (observed) values y(xi)−f(xi)β̂ at the n points of the DoE. The so-called
mean prediction of y at any point x ∈ D is hence given by:

E(Y (x)) = f(x)β̂ + r(x)′R−1
(
yx − Fxβ̂

)
(5)

Similarly, by plugging λ∗x in the expression of the MSE, the mean squared error of the
predictor (the so-called kriging variance) is obtained:

sY (x) =σ2
(
1− r(x)′R−1r(x)

+ (f(x)− r(x)′R−1Fx)
(
F

′
xR
−1Fx

)−1
(f(x)− r(x)′R−1Fx)′

)
(6)

σ2 is estimated as follows:
σ̂2 =

1

n
Υ′R−1Υ (7)

and parameters θ are mostly estimated using the maximum of likelihood, under Gaussian
assumptions (see Welch et al. (1992)). Consequently, the following expression measures the
quality of the model, where smaller values represent a better fit (see, e.g., Jeong et al. (2005)):

− 2 ln
(
β̂, σ̂2, θ̂

)
= n ln(2π) + n ln

(
σ̂2
)

+ ln (| R |) +
1

σ̂2

(
yx − Fxβ̂

)′
R−1

(
yx − Fxβ̂

)
(8)

Variance sY (x) tends towards zero when x gets close to experimental points xi. In other
words, error is null at samples and increases with distance: kriging is an exact interpola-
tor, i.e. Y (xi) = y(xi), ∀i = 1, ..., n. However, this property can be released in case of
non-deterministic responses (see below). Contrary to the OLS regression where all observa-
tions xi are given an equal weight in the estimation, kriging estimation adjusts the weights
λx, depending on the point x ∈ D where the response y is interpolated. More precisely,
experimental points xi closer to the point x are given a stronger weight in the estimation of
Y (x) than further ones. This property makes kriging estimations more flexible, and results
in more precise estimations than with OLS (van Beers & Kleijnen (2004)). This feature also
requires particular properties of the DoE.

2.3.3 Properties of the DoE for the kriging approach

In classical DoE, points are set on the extremities of the domain, as illustrated in Figure 2a.
This characteristic prevents the analysis from accurately estimating the parameters of θ in
kriging models because the response is only measured at very distant points. Consequently,
kriging estimation requires a DoE with good space-filling properties. Points have to be
uniformly distributed across the domain. Designs that fulfil this requirement are called
uniform designs (see Figure 2b). This criteria is essential if the modeller’s aim is a wide
exploration of the model, without a precise prior knowledge of the relations between the
factors and the response (Fang et al. (2000)). Latin hypercubes are often used to that end
(see Goupy & Creighton (2007)). Figure 4 illustrates the way such a DoE is constructed
in a case with 3 factors – A, B and C, each of them taking 3 values. There are then
33 = 27 possible combinations. Let us start with a square, representing the values of factor
A (denoted by Arabic numbers) and B (in Roman numbers). We then attribute the three
Latin letters a, b, and c, representing the 3 values of factor C, so that a, b and c are uniquely
displayed in all rows and all columns. Only 12 configurations are possible6, and we randomly
take one. The DoE involves 9 points, over the 27 initially to be tested. The DoE can be
represented in 3 dimensions, as a cube. When more than 3 dimensions are involved, the
DoE is an hypercube. Hypercubes ensure that the non-collapsing criteria is fulfilled: each
combination of three factors is tested only once. More precisely, if one of the three factors
turns out to be unimportant and is eliminated, no points become identical in the 2D space
constituted by the two remaining factors (see van Beers & Kleijnen (2004, p. 166)).

6There are two possible triplets of rows (bac, cba, acb) and (abc, cab, bca), each can be permuted in 3! = 6
different ways, so that one obtains 2× 6 = 12 possible configurations.
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(a) 2D-view
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(b) 3D-view

Figure 4: A latin cube, with 3 factors and 3 levels (source: Goupy & Creighton (2007))

We propose to use the Latin hypercube of Cioppa (2002), based on previous works of Ye
(1998), because it provides interesting properties, besides having good space filling properties.
Latin hypercubes are not generally orthogonal, some pairs of columns can be correlated. This
feature can create multicolinearity issues in the estimation of the meta-model. Ye (1998)
develops a way to obtain orthogonal hypercubes, and he even retains a more restrictive
condition: not only each pair of columns has to be uncorrelated, but also the squares as well
as the cross-products of each column. However, orthogonality is obtained at the expense of
the space-filling properties of the DoE. Cioppa (2002) obtains an interesting trade-off between
the two properties, while limiting the size of the DoE. The orthogonality criterion is released
and the author defines a near-orthogonality criterion, according to which absolute values of
correlations cannot exceed 0.03. Results are impressive: Cioppa demonstrates that non-linear
relations and interactions can be significantly identified with only 17 experiments up to 7
factors, 33 experiments up to 11 factors, 65 experiments up to 16 factors, 129 experiments
up to 22 factors and 257 up to 29 factors. Moreover, those corresponding DoE are easy to
generate: a spreadsheet file helping their computation is available in Sanchez (2005). The
DoE are also constructed with a minimum of a priori restrictions on the relations between
the factors and the response, as they allow for the estimation of a polynomial model of the
form (1) as well.

2.3.4 Additional issues in the meta-model choice

More complex forms of the correlation function R can be chosen but a more sophisticated
correlation function requires more observations to accurately estimate its parameters.

In practice, the trend µ is often reduced to a constant µ̄, which is thus interpreted as the
mean of the process Y (see Figure 3)7. In that case, Equation (5) is reduced to:

E(Y (x)) = µ̄+ r(x)′R−1 (yx − µ̄) (9)

However, if the trend is constant, the model is more sensitive to the specification of the
correlation function R and to the estimations of the parameters θ (Jourdan (2005)). The
trend or the correlation function may also be chosen according to an optimality criterion.
Either one can use cross-validation, or external validation.

Cross validation consists in removing one or several points of the DoE, reestimating
the model, and comparing the error between the estimations and the observed values at
the removed points. The assessment of the estimation quality is then based on the Q2

predictivity coefficient (see Durrande et al. (2012)), which is a proxy of the R2 of standard

7In that case, the meta-model refers to ordinary kriging, and of simple kriging if the mean is known, contrary
to universal kriging in the more general case, which is exposed above.
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linear regressions, and is computed as8:

Q2 ≡ 1−

∑n
i=1

(
y(xi)− Ŷ (xi)

)2
∑n

i=1 (y(xi)− ȳx)2
(10)

where ȳx is the mean of y over the n observations of the DoE, Ŷ (xi) is the predicted value of
y at the sampled point xi, when the estimation is performed by using the n− 1 points X−i
(i.e. removing point xi from the DoE). Values close to zero denote a weak predictive power,
whereas values close to one indicate a better fit.

External validation requires the estimation of the response at additional points, which are
randomly chosen outside the DoE. The observed values at those points are then compared
with the kriging predictions based on the original n points of the DoE, and the kriging
meta-model which minimizes the root mean square error (RMSE) is chosen. Both criteria
are broadly consistent with each other but relying on external validation is preferable when
the DoE involves a small number of points because cross-validation may lead to imprecise
estimations.

In the case of non-deterministic responses, different runs with the same parameter values
yield different values of the response, and experiments have to be replicated several times
to obtain a significant evaluation of the response at a given point of the DoE. The kriging
model is then applied to the average value of the response over the number of replications
(van Beers & Kleijnen (2004)). Let ỹ(xi) = y(xi) + εi be the value of the response at point
xi of the DoE. We assume that εi ↪→ NID(0, τ2i ), where τ2i is the variance of the observed
values of y over replications of the experiment at point xi of the DoE. As soon as the process
Y and the errors εi are independent, kriging meta-modeling can very easily be extended
to non-deterministic responses. Matrix R in Equations (5), (6) and (7), or in (9), is just
replaced by R+ ∆, where ∆ ≡ diag(τ21 , ...τ

2
n) (see for example Roustant et al. (2010)). The

only difference is that the kriging-based estimation has now two sources of error: not only
the error due to the difference between y and its meta-model Y , but also an experimental
error, i.e. the noise in the response measurements ε. In that case, the variance (6) is higher
than in the case of deterministic responses.

Before turning to the application of kriging meta-modeling and DoE to economic models,
we conclude this section with a discussion of the main purposes of a meta-model.

2.3.5 Purposes of the meta-model

A meta-model is mostly devoted to two purposes. Sensitivity analysis of the computational
model is the first one. It aims at identifying how much influence each factor has on the
response, and which factors do not significantly affect the response. Rather than interpreting
the estimated coefficient θg for each factor g = 1, .., k, a functional analysis of variance
(ANOVA) of the meta-model Y can be performed, as a proxy of the ANOVA of the true
model y (see Jeong et al. (2005)). To do so, the total variance of the meta-model Y is
decomposed into that of each factor and their interactions. Formally, the decomposition is
performed by integrating factors out of the meta-model Y 9. LetM be the average and V be
the variance of Y over D:

M≡
∫
Y (x)Πk

g=1dxg (11)

V ≡
∫

[Y (x)−M]2 Πk
g=1dxg (12)

8Recall that kriging is an exact interpolator, so that the R2 coefficient cannot be computed.
9In practice, either the factors have a finite set of values, and the ANOVA is performed using the common

formula of the multi-variate analysis of variance with discrete factors, see, for instance, Frey & Patil (2002); or
the factors are defined over a continuous domain, and the experimental domain has to be discretized in order
to apply these formula. In that case, predictions of the response through the meta-model are evaluated over a
k-dimensional grid (see Welch et al. (1992), Saltelli et al. (1999)).
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The main effect of factor xg on Y (averaged over the other factors) is given by:

m(xg) ≡
∫
Y (x)Πj 6=gdxj −M (13)

and the two-way interaction effect of factors xg and xh:

m(xg, xh) ≡
∫
Y (x)Πj 6=g,hdxj −m(xg)−m(xh)−M (14)

The total sensitivity of the response Y to factor xg (taking into account its two-way inter-
actions with all other factors) is given by M(xg) ≡ m(xg) +

∑
g 6=hm(xg, xh). The ratio of

Mg ≡ M(xg)
V ∈ [0, 1] indicates the proportion of variation in Y which is due to variation

in factor xg. Such ratio can be plotted as barplot for each factor to sum-up the sensitivity
analysis outcomes (see Figure 6c below for an example). It is usual to plot the sensitivity of
the response to each factor in order to highlight the relative magnitude of the effects of the
factors, and to indicate interaction effects or non-linearities. For instance, plotting m(xg)
against the values of factor xg over the experimental domain gives a visual indication of the
main effect of factor xg on Y and, hence, on y (see Figures 5a-5f below). Similarly, plot-
ting m(xg, xh) against xg and xh yields a three-dimensional surface of the response Y , and
highlights the interaction effects of the two factors on the response (see Figures 5g-5i below).

The meta-model can further be optimized, in order to identify the values of the factors
which minimize (or maximize) the proxy Y of the true process y.

The next section illustrates the advantages of the kriging-based meta-modeling, and gives
practical guidelines to the reader. We show that this approach is more parsimonious that
standard Monte-Carlo explorations in both examples, and we use the second example for
also introducing the other potentially very interesting use of this approach: finding configu-
rations that are optimal in terms of a given criterion (eg. maximizing the social welfare, or
minimizing the distance to empirical stylized facts).

3 Applications

3.1 Sensitivity analysis of Nelson & Winter (1982) model
3.1.1 A simple model of industry evolution

The industry dynamics model of Nelson &Winter (1982, Chap. 12 to 14) has been extensively
analyzed in the literature, and its detailed properties have been established using many
different types of analysis (the original work of Nelson & Winter uses simple tables and
graphics to this end). Many different implementations of this model using different languages
and platforms exists on the academic internet (the original code was implemented on a
mainframe). We implement this model in NetLogo10, which is an open source agent-based
modeling platform. We focus on the analysis of the factors that may lead to the emergence
of highly concentrated industrial structures11.

In this very simple model, each firm uses a single input (physical capital) to produce a
unique output. Technical progress results from the R&D activities of each firm and increases
the productivity of its capital stock (disembodied technical progress). The physical capital
stock of each firm also changes as a consequence of the investment activity of the firm.

The industry is populated by n firms, indexed by j = 1, ..., n, each producing a quantity
qj,t of the good in each period t according to:

10http://ccl.northwestern.edu/netlogo/
11See also Nelson & Winter (1978) for an extensive presentation and discussion of the model. In this paper, we

only use this model as a simple example, in order to apply the method previously developed. We adopt values
used in the original model for the parameters that we do not include in our experiments.
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qj,t = Aj,tKj,t (15)

where Kj,t is firm j’s physical capital stock and Aj,t is the productivity of its capital. Given
their capital stock and their productivity, firms sell the totality of their production to the
consumers whose inverse demand function is given by:

Pt =
D

Qηt
(16)

where Qt ≡
∑n

j=1 qj,t is the aggregate supply, and the price is consequently adjusted in order
to attain the temporary equilibrium of the period on the product market. We use here the
values of the demand parameters adopted in the original version of the model (D = 64, η = 1).
Given this price, the net profits of firm j equal:

πj,t = (Aj,tPt − c)Kj,t =

(
Pt −

c

Aj,t

)
qj,t (17)

where c is the unit using cost of capital, including R&D costs.
Firms invest in each period a fixed proportion of their capital stock on imitative and

innovative R&D. These R&D investments respectively determine the probabilities for the
firm of being successful in imitation (and imitate the technique with the highest current
productivity in the industry), and in innovation. When successful in innovation, the ex-
act new technique that can be discovered by the firm depends on the properties of the
technological regime characterizing this industry. Nelson & Winter consider different tech-
nological regimes in their original work. We consider here only the simplest technolog-
ical regime with science–based innovations. In that case, the new technique discovered
after a successful innovation depends on the latent productivity that increases at a con-
stant exponential rate g (the advance of scientific knowledge). In each period, with a
probability P (innov = 1) = 0.0025Kj,t, a firm can be successful in innovation, and dis-
cover a new technology Ãj,t, assuming log(Ãj,t) ↪→ N (A0 + g.t, σ2). With a probability
P (imit = 1) = τimKj,t, a firm can also be successful to imitate the best technology in the
industry: A∗t = maxj=1,...nAj,t. In t+ 1, firm j’s technology is therefore given by the best of
these technologies:

Aj,t+1 = max
(
Ai,t, innov · Ãi,t, imit ·A∗t

)
(18)

Gross investment I of a firm is constrained depending on whether the firm is making
economic profits or not. Formally,

Īj,t =

{
πj,t if πj,t < 0

(1 +B) · πj,t if πj,t ≥ 0
(19)

where B > 0 denotes the external financing of firms. Each firm j has a target mark-up,
defined as µj,t = ε

ε−sj,t , where ε is the perceived demand elasticity (η, equals to 1/n in the
original model, see Equation (16)), and sj,t ≡ qj,t

Qt
is the market share of firm j. Firms desire

positive net investment ITj,t if the ratio of price to unit cost exceeds a target markup factor.
Formally:

ITj,t =

(
1− µj,t

c

Aj,t+1Pt

)
(20)

Finally, actual gross investment Ij,t is given by max
[
0,min(Īj,t, I

T
j,t)
]
.

Technical progress drives the performance of the firms and dynamics of their capital
stock. We focus here on the dynamics of resulting market concentration, measured as the
concentration of the capital stock among firms. Since we do not have exit in this model,
the evolutionary dynamics will correspond to higher growth rate for the successful firms in
the industry, and as a consequence, the concentration of capital will change. Depending on
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the technological regime, technical progress can be unevenly distributed between firms, and
yield an increasing market concentration. We measure the final state of this concentration
through the value in the last period of a normalized Herfindahl index, denoted by ht ∈ [0, 1]:

ht =

∑n
j=1

(
Kj,t∑n
j=1Kj,t

)2
− 1

n

1− 1
n

(21)

When the market shares tend to be evenly distributed across the n firms (Kj = K,∀j), the

standard Herfindhal index
∑n

j=1

(
Kj,t∑n
j=1Kj,t

)2
tends to 1/n, and the normalized index h tends

to zero. When one firm tends to corner the whole market, the index, and its normalized value,
tend to unity. Values close to zero therefore indicate a competitive market and values close
to one stand for a monopolistic industry. The normalized value is used in order to compare
simulations with different numbers of firms.

3.1.2 Comparing Monte Carlo sampling versus the NOLH and kriging
approach

Two simulation protocols We follow Nelson & Winter (1978) by defining a period
t a quarter, setting c = 0.16, Aj,0 = A0 = 0.16, ∀j, and defining k = 6 factors: τim ∈
[0.000625, 0.005], reflecting different levels of the difficulty of imitation; n ∈ J2, 32K; ε ∈
[0.8, 1000]; g ∈ [0.25, 1.5]%; B ∈ [1, 3.5]; σ2/g ∈ J4, 12K.

We compare two alternative methods to explore this experimental domain and to de-
termine the effect of these 6 factors on the response h. The first one involves 1000 Monte
Carlo simulations12, over which we adjust a polynomial regression model of the form (1) with
two-way interaction effects.

The second one implements the NOLH DoE that we have introduced in the previous
section, over which we estimate a kriging meta-model of h, denoted by H. We then perform
an ANOVA of the kriging meta-model. As we need to discretize the experimental domain to
generate the NOLH DoE, we follow the values investigated by Nelson & Winter (1978), and
consider τim = {0.000625; 0.00125; 0.0025; 0.005}, n = {2, 4, 8, 16, 32}, ε = {0.8; 1; 1000}, g ∈
[0.25, 1.5]% by 0.25 step, B = {1; 1.5; 2; 2.5; 3; 3.5} and σ2

g = {4, 8, 12}. The corresponding
DoE from Sanchez (2005) involves only 17 points and is given in Table 3. Following Nelson &
Winter (1982), we repeat each non-deterministic run 5 times, i.e. we launch 85 simulations.
The analysis is performed using JMP (Cary 2010, Chap. 14), see also Oeffner (2008) for an
application to a macroeconomic agent-based model.13 We use ordinary kriging (i.e the trend
µ is assumed to be a constant), and the correlation function is Gaussian.

Results Figure 5 reports the ANOVA table of the kriging meta-model H as well as the
plots of marginal and interaction effects14, and Tables 1 and 2 depict the results of the
polynomial regression models (for the 1000 and the 10, 000 simulation samples), in which
cross-products have been introduced (see second column) in order to allow for comparisons
with the ANOVA table of the kriging meta-model.

The overall picture is fairly the same: the number of firms n and the rate of imitation
τim are the main determinants of market concentration, while parameters g, ε and B do not
significantly influence the structure of the industry. This can be seen by looking at the plots
of the marginal effects of the response to values of g, ε and B, which clearly show that the
response is invariant to these parameters’ values (cf. Figures 5c, 5e, 5f). Accordingly, the
ANOVA table reports negligible or even zero marginal effects for these parameters (see the

12We also consider a 10, 000 simulations Monte Carlo sample for robustness checks.
13R Development Core Team (2009) software can also be used but the package effects, which computes ANOVA

marginal effects, is not directly connected to the DiceKriging package, which performs kriging estimation and
the modeler has to use the package sensitivity, which delivers less detailed results (see Roustant et al. (2010)).

14These figures are built using the principles given in Sub-subsection 2.3.5.
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factors θ M(.) m(.) m(., n) m(., g) m(., σ
2

g ) m(., τim) m(., B) m(., ε)

n 0.0015 0.6402 0.4054 . 0.0000 0.0102 0.2246 0 0
g 14.3371 0.0006 0.0006 0.0000 . 0.0000 0.0000 0 0
σ2

g 0.002 0.0341 0.0136 0.0102 0.0000 . 0.0103 0 0
τim 176794.16 0.566 0.331 0.2246 0.0000 0.0103 . 0 0
B 0 0 0 0 0 0 0 . 0
ε 0 0 0 0 0 0 0 0 .

µ̄ = E(H) = 0.005 σ̂2 = 0.0000 −2 lnLik. = −246, 6999

1 For each of the 6 factors (by row), the second column reports the associated value of the coefficient θ (see
Equation (3)), the third one gives the total sensitivity, which covers both the main effect (fourth column, see
Equation (13)) and the two-way interaction effects with other factors (all remaining columns, see Equation (14)).

(a) m(n) (b) m(τim) (c) m(g)

(d) m(σ
2

g ) (e) m(ε) (f) m(B)

(g) m(n, τim) (h) m(σ
2

g , n) (i) m(τim,
σ2

g )

Figure 5: ANOVA table of the kriging model H.
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Estimate Std. Error Pr(> |t|) Estimate Std. Error Pr(> |t|)
cst. 0.312 0.116 0.0082** n.σ

2

g 0.001 0.000 0.035*
n 0.965 0.003 0.000*** n.τim 6.752 0.4284 0.000***
σ2

g 0.001 0.012 0.90 σ2

g .τim 1.926 2.0052 0.338
τim -84.13 24.262 0.001*** n.B -0.001 0.001 0.144
B -0.0214 0.034 0.528 σ2

g .B 0.001 0.003 0.804
g 5.54 8.186 0.499 τim.B 9.1775 5.4153 0.1
ε 0.000 0.000 0.347 n.g -0.1469 0.1479 0.321

σ2

g .g -0.5928 0.6673 0.375
τim.g 1056.295 1297.656 0.416
B.g -0.66 1.836 0.719
n.ε -0.000 0.000 0.179
σ2

g .ε -0.000 0.000 0.517
τim.ε -0.001 0.01 0.364
B.ε 0.000 0.000 0.922
g.ε -0.000 0.003 0.917

Adjusted R2 = 0.9997 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’ ’ 1

Table 1: OLS regression of h over the 1000 points Monte Carlo sample.

Estimate Std. Error Pr(> |t|) Estimate Std. Error Pr(> |t|)
cst. 0.3580 0.0408 0.0000*** n.σ

2

g -0.0001 0.0001 0.2408
n 0.9551 0.0011 0.0000**** n.τim 7.1698 0.1494 0.0000***
σ2

g 0.0047 0.0037 0.2062 σ2

g .τim -0.1254 0.5763 0.8278
τim -66.4845 7.6013 0.0000*** n.B -0.0001 0.0002 0.6389
B 0.0002 0.0107 0.9883 σ2

g .B 0.0001 0.0008 0.9190
g 3.4004 2.6649 0.2020 τim.B 0.5617 1.5445 0.7161
ε 0.0001 0.0000 0.0565 n.g -0.2076 0.0525 0.0001***

σ2

g .g -0.3193 0.2025 0.1150
τim.g 836.0536 368.2086 0.0232*
B.g 0.0559 0.5426 0.9180
n.ε 0.0000 0.0000 0.6882
σ2

g .ε -0.0000 0.0000 0.0607
τim.ε -0.0060 0.0047 0.1944
B.ε -0.0000 0.0000 0.9122
g.ε -0.0031 0.0016 0.0565

Adjusted R2 = 0.996 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’ ’ 1

Table 2: OLS regression of h over the 10, 000 points Monte Carlo sample.

third column M(.)). By contrast, Figures 5a and 5b show that the estimated Herfindhal
index is highly sensitive to the values of n and τim, and the ANOVA table reports non-zero
marginal effects (respectively 0.6402 and 0.566 for n and τim) . The more firms, or the
less frequent imitation, the more concentrated the industry (cf. Figures 5a and 5b). As
the size of the market is fixed (see Equation (16)), the selective pressure is strengthened
and the decrease in price is faster, ceteris paribus, as the number of firms n increases. This
mechanism intuitively explains the predominant role of n. Moreover, the interaction term
between n and τim is significant (the ANOVA table reports a non-zero interaction effect,
precisely 0.2246, and the response surface in Figure 5g is sensitive to values of τim and
n). Imitation affects the industry all the more that n is large. When the number of firms
increases, the selective pressure on lagging firms increases, and imitation becomes the major
tool for decreasing this pressure, by catching up with the technological leader. The highest
degree of concentration (corresponding to the highest value of H) is obtained with scarce
imitation and a high number of firms (see Figure 5g). Intuitively, among a lot of firms, a
firm is more likely to gain a striking competitive edge if it cannot be imitated easily.
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When we compare these results with the Monte-Carlo simulations, we observe that not all
of them can be captured by the 1000 simulation experiment. In fact, in more extensive tests,
we observed that we need at least 2000 Monte-Carlo simulations to be able to systematically
catch15 the direct effects of n and τim. Otherwise, one of these effects can remain hidden in
some samples. Concerning the two-way interactions, only the one between these two main
variables can be observed in the 1000 simulations experiment. More runs are necessary to
observe the role of the easiness to discover new technologies (determined by g and σ2/g).
The role of this technological dimension only appears in experiments with a considerably
higher number of simulations (10, 000 simulations are necessary in this case), and the linear
regressions catch only the multiplicative components of this dimension.

These results also show that we may over-estimate direct effects if we do not use a
sufficient number of simulations. We also observe that a higher concentration tends to emerge
when research outcomes are strongly dispersed, all the more that there are many firms. It
should be noted that the kriging analysis underlines the individual effects of g and σ2/g (see
Figures 5c and 5d), as well as the interactions of σ2/g with n and τimit (see Figures 5h and
5i), while the least squares regression model based on 10, 000 data significantly reports the
interactions of g with n and τimit. Despite this minor discrepancy, the two models deliver
the same message, and highlight the role of innovation draws: concentration is higher if
innovations are diverse, especially if imitation is rare, and firms are numerous. In such a
context, a firm is more likely to gain a competitive edge because it is more likely to draw
a leading innovation, without being imitated in subsequent periods. While this result is
intuitively appealing, it should be noted that the effects are quite small, as the ANOVA table
reports non-zero but much smaller marginal effects (0.0341 for σ2

g , 0.0102 for the interaction

between n and σ2

g and 0.0103 for the interaction between τim and σ2

g ).

The possibility of catching the main effects of the parameters, and their interactions, with
only 85 simulations, instead of 2000 or 10, 000 clearly show the frugality of the approach
proposed in this article. Importantly, note that these results are completely consistent with
those of Nelson & Winter (1978, 1982).

3.2 Kriging-based optimization within a Cournot oligopoly model
We now propose a two-stage analysis of a Cournot oligopoly model with adaptively learning
firms. First, as in the preceding section, we develop a sensitivity analysis using a kriging meta-
model, in order to demonstrate the possibility of such an analysis exclusively using R-Project
(R Development Core Team 2009) software.16 The exact form of the kriging meta-model (the
correlation function and the trend) is chosen according to the Q2 predicticity coefficient and
the external validation procedure discussed in Sub-sub-section 2.3.4. We then compare these
sensitivity results with those obtained using a simple econometric analysis based on Monte
Carlo simulations. At a second stage, we use the meta-model to identify the configuration of
factors that yields a minimal distance of firms to the Cournot equilibrium. This configuration
is hence the one that favors the convergence of learning firms to this equilibrium.

3.2.1 A baseline oligopoly model

We define a simple oligopoly game with n > 1 firms, calibrated as in Vallée & Yıldızoğlu
(2009):

P (qj , Q−j) = 256− 2(qj +Q−j) (22)

C(qj) = 56qj + q2j (23)

where P denotes the aggregate price, qj firm j’s supply, Q−j =
∑

i 6=j qi and C(.) is the cost
function. We assume n = 30, and the game has two symmetric equilibria, ∀j:

15We consider that we catch these effects in a robust way if they appear as significant in each of the 100
regressions obtained from 100 random sets of 2000 simulations.

16The complete code used in this section is provided in Appendix B.
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• Cournot-Nash equilibrium (CE): qj ' 3.125 and the profit equals πcj = 68.5

• Walrasian equilibrium (WE): qj = qw ' 3.2258 and the profit equals πwj = 62.45 < πcj

Firms update their supply qj according to a learning mechanism. With a probability
Pim, for each period, firms can imitate the strategy of the firm which is making the highest
profit in the industry. Otherwise, they use their individual mental model, represented by
an artificial neural network (ANN)17. Each firm is endowed with a one-hidden layer ANN
with hid > 1 hidden nodes. This ANN is fed in each period with 4 inputs (price evolution,
evolution of individual sales, variation of individual costs and evolution of individual profit),
and each firm has a population of 40 quantity strategies. In each period, each firm selects
the strategy among this population which maximizes the expected discounted profit flow
predicted by the ANN over the fL+1 future periods (with a discount factor set to 0.99). As
new observations become available, firms’ ANNs are trained by back propagating the errors
on the ANN coefficients: epoch iterations are performed to reduce each time a proportion
δ of the error between the predicted and the actual profit flow. Finally, every γGA periods,
the population of strategies is modified by operators selection, mutation (with a probability
Pmut) and average crossover (with a probability Pco).

In this model, we investigate the design of the learning algorithm which allows the in-
dustry to converge towards the CE. We have k = 8 factors depicting firms’ learning, with
the following associated variation domains: imitation probability Pim ∈ [0, 0.25]; muta-
tion probability, Pmut ∈ [0.01, 0.2]; crossover probability, and Pco ∈ [0.05, 0.4]; number of
hidden nodes, hid ∈ J2, 4K; forward looking horizon of the firms, fL ∈ J0, 12K; length of
the training period, epoch ∈ J20, 50K; error correction rate, δ ∈ [0.05, 1]; GA frequency,
γGA ∈ J1, 30K. The response variable is the absolute distance of aggregate supply to its CE
value, d ≡|

∑n
j=1 qj − nqc |, evaluated at the end of a 1000 period run, and its kriging-based

approximation is denoted by D. We aim at determining the factor configuration for which
the distance, d, is minimized. We sample the 8-dimensional parameter space with Sanchez
(2005) NOLH DoE given in Table 4, which defines n = 33 deterministic experiments. Each
experiment is repeated 20 times in order to account for the non-deterministic nature of the
learning model, and we apply kriging over the average response in each experiment. The
combination of a reduced number of simulations with a kriging meta-model turns out to
be very useful indeed for models involving algorithms such as ANNs, which are quite time
consuming to run.

3.2.2 Sensitivity analysis and optimization with a kriging meta-model

Model selection The first stage of our analysis concerns the choice of the form of the
kriging meta-model. The R-project package DiceKriging (see Roustant et al. (2010)) allows
this flexibility. We compare three different correlation functions (Gaussian, exponential and
Matèrn ν = 5/2, which is the default function in this package), and two specifications of the
trend µ (a constant, and a first-order polynomial).18 In order to discriminate between these
potentially valid specifications, we use both external validation, and cross-validation (see
paragraph 2.3.4). For external validation, we evaluate the kriging meta-model’s predictions
at 7 additional experimental points, that we randomly choose over the whole experimental
domain (see Table 4). Table 6a reports the results of this comparison. The two criteria
broadly give the same insights into the meta-model’s predictive power. Yet, as we only have
a small set of points (n = 33), we rely on external validation, and choose the form of the
meta-model which minimizes the root-mean-square error (RMSE) between the predicted and
the observed response values at the 7 additional points. Accordingly, we select the ordinary
kriging meta-model (i.e. in which the trend µ is only a constant term) with the Gaussian

17See Masters (1993) for a general statement, see Yıldızoğlu (2001) and Yıldızoğlu et al. (2012) for the precise
description of the learning algorithm.

18Higher order polynomials would involve too many parameters to be estimated, considering only 33 observations.
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correlation function. Table 6b gives the estimated values of the coefficients of the selected
kriging meta-model.

Sensitivity analysis In a second stage, the sensitivity analysis of the kriging meta-
model is performed. Figure 6c summarizes the effects of each factor on the response, and
identifies three factors which drive the model’s dynamics, with the same order of magnitude
(about one third of the response variability is due to each of these three factors)19: the
probability of imitation Pim (probImit), the probability of mutation Pmut (probMut) and the
rate of application of the genetic algorithm γGA (gaRate), which modifies the population of
firms’ strategies.

We can again compare the results of the NOLH and kriging–based DoE to the ones
obtained using a standard Monte-Carlo analysis using an OLS estimation of the determinants
of the distance d. Table 7a reports the results obtained with a sample of 10, 000 Monte Carlo
simulations. The results show that the ANOVA-based sensitivity analysis of the meta-model
is again able to catch the role of the main three factors: Pim, Pmut and γGA. We should note
that the Monte-Acrlo analysis becomes able to systematically catch the direct effects only
after 3800 runs, while at least 4600 runs are necessary to catch also all two-ways interactions.
Compared with the 660 simulations we run when using NOLH and kriging, Monte-Carlo
sampling clearly appears more costly.

Convergence to the Cournot equilibrium Graphics in Figure 6d give more details
on the structure of the estimated response surface (D), based on the kriging meta-model
according to the values of Pim, Pmut and γGA. The main insight is the primary role of
the social dimension of learning (approximated by the rate of imitation) in the convergence
towards the CE: in the absence of imitation, the model remains far from the CE (D equals
almost 4 units in the best case, see left panel of Figure 6d), and mutation has to be very
scarce for this distance to be minimized (recall that mutation of strategies arises every γGA
periods, with a probability Pmut for each strategy). Convergence is much stronger (D < 0.5)
when moderate imitation (Pim = 0.15) combines with moderate mutation (Pmut ' 0.07,
and rather infrequent modification of the strategy population γGA ' 20, see the middle
panel). Moderate rates of imitation and mutation balance the risk of premature convergence
to a sub-optimal situation in terms of profits when imitation is frequent, and mutation
is too rare to introduce enough innovative strategies among the population of firms. Too
much imitation prevents firms from sufficiently using individual learning through their ANN,
exposing to the risk of premature disappearance of the diversity of strategies, and hinders
convergence towards the CE. It should be noted that the negative role of social learning in
the convergence toward the CE within a Cournot oligopoly has been extensively discussed
in the related literature (see, notably, Vallée & Yıldızoğlu (2009)).

In comparison, plotting the estimated value of the distance, D, based on the OLS regres-
sion estimated on the Monte Carlo sample fails to deliver these insights about the role of
imitation (Figure 7b).

Optimal configuration In a third stage, we determine the factor values that minimize
the estimated value of the distance (D). Any optimization algorithm can be used to perform
such task, but we draw the attention on the rgenoud R-project package (R-GENetic Opti-
mization Using Derivatives, see Mebane & Sekhon (2011)), connected with the DiceOptim
package (see Roustant et al. (2010)). It carries out a powerful optimization function that
combines evolutionary algorithm methods for global purposes, with a gradient-based method
for a local search of optima.20 By using this algorithm, we are able to determine the optimal

19It should be noted that applying sensitivity analysis to the other forms of kriging identifies the same determi-
nants, which indicates that the overall picture of the meta-model is not sensitive to the specification.

20See also Salle et al. (2012) for an application of this function to the minimization of a Central Bank’s loss
function in a macroeconomic agent-based model.
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cov. matèrn Gaussian cov. Exp. cov.
µ̄ 1st order µ̄ 1st order µ̄ 1st order

RMSE 1.5787 1.6335 1.3208 2.4772 2.1608 2.1458
Q2 0.6865 0.7543 0.7144 0.6703 0.3913 0.6457

(a) Comparison and selection of kriging meta-models based on the NOLH DoE.

E(D) = µ̄ 5.0279 σ̂2 9.9231
θPim 0.0998 θγGA 19.4
θPmu 0.0791 θδ 1.9
θPco 0.7 θhid 4
θfL 24 θepoch 60

(b) Ordinary kriging estimation of d
(Gaussian correlation function)
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(c) Sensitivity analysis of the selected meta-model
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(d) Estimated response surfaces of the kriging meta-model, the other 5 pa-
rameters are set at the middle of their variation domains. Pmut on the x-axis,
γGA on the y-axis, for three values of Pim = {0, 0.15, 0.25}.

Figure 6: Kriging model D.

design of the learning algorithm that favors the convergence towards the CE:

P ∗im = 0.1454, hid∗ = 3, fL∗ = 9, epoch∗ = 37, δ∗ = 0.8745, γ∗GA = 23, P ∗mut = 8%, P ∗co = 5%

for a minimum value D∗ = 0.1165, which is very small given that D measures the total
distance over 30 firms. Test simulations performed with this optimal configuration actually
report very small values of the distance, which proves that the kriging estimation is accurate
and reliable.

Importance of being consistent In a last stage, we run a comparison exercise, in
order to highlight the importance of selecting the sample points with the NOLH DoE in
obtaining an accurate prediction of the response surface. Instead of using this DoE, we com-
pletely randomly draw 33 points over the experimental domain, and repeat the estimation
procedure of the kriging meta-model based on this random sample. Table 8a reports the pre-
dictivity coefficient values and the RMSE of external validation over a 7 points sample. The
kriging meta-model with a Gaussian correlation function and a first order trend minimizes
the RMSE, but the corresponding values are much higher than those previously obtained
through the use of the NOLH DoE data, and they clearly indicate that the meta-model is
less accurate. Figure 8b shows that, when based on a random DoE, the kriging meta-model
fails to identity all significant effects on the response. In particular, the probability of mu-
tation, Pmut, does not stand out, while two-third of the total variability of the distance d is
attributed to the sole probability of imitation. Figure 8c shows the same response surfaces
as in Figure 6d for the random DoE-based estimation. We observe a strong discrepancy
between these two sets of graphics, especially for high levels of imitation. By optimizing the
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Estimate Std. Error Pr(> |t|) Estimate Std. Error Pr(> |t|)
(Intercept) 5.0125 0.8573 0.0000*** Pmut:γGA -1.0281 0.0500 0.0000***

Pim -23.5296 2.5362 0.0000*** Pmut:δ -0.9211 1.6241 0.5706
Pmut 72.0525 3.1213 0.0000*** Pmut:hid 1.0042 0.5483 0.0671
Pco -1.1500 1.7586 0.5131 Pmut:epoch -0.1028 0.0500 0.0400 .
fL -0.0053 0.0482 0.9131 Pco:fL 0.0352 0.0694 0.6117
γGA -0.1331 0.0201 0.0000*** Pco:γGA -0.0200 0.0290 0.4910

δ 0.6246 0.6470 0.3344 Pco:δ -1.3020 0.9434 0.1676
hid -0.3029 0.1942 0.1187 Pco:hid 0.3694 0.3140 0.2395

epoch -0.0169 0.0176 0.3365 Pco:epoch 0.0338 0.0289 0.2423
Pim:Pmut -241.3283 6.1985 0.0000*** fL:γGA -0.0015 0.0008 0.0578
Pim:Pco -2.9659 3.5752 0.4068 fL:δ 0.0248 0.0253 0.3264
Pim:fL -0.2741 0.0964 0.0045** fL:hid 0.0021 0.0085 0.8062
Pim:γGA 1.0552 0.0405 . 0.0000 fL:epoch 0.0007 0.0008 0.3640

Pim:δ 2.0076 1.3233 0.1293 γGA:δ -0.0139 0.0106 0.1910
Pim:hid -0.1325 0.4436 0.7652 γGA:hid 0.0046 0.0035 0.1922

Pim:epoch 0.0796 0.0407 0.0506 γGA:epoch 0.0000 0.0003 0.9822
Pmut:Pco 1.0917 4.4441 0.8060 δ:hid -0.0796 0.1158 0.4919
Pmut:fL 0.1270 0.1197 0.2890 δ:epoch -0.0069 0.0106 0.5184

hid:epoch 0.0026 0.0036 0.4718
Adjusted R2 = 0.61 Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’ ’ 1

(a) OLS regression of d over the 10, 000 point Monte Carlo sample.
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(b) Estimated response surfaces of the OLS model (estimated on the 10,000 Monte
Carlo sample), the other 5 parameters are set at the middle of their variation
domains. Pmut on the x-axis, γGA on the y-axis, for three values of Pim =
{0, 0.15, 0.25}.

Figure 7: OLS regression model over the 10,000 Monte Carlo sample.

kriging meta-model using a random DoE, we obtain a negative minimal distance (−4.805),
which is clearly not relevant (as the distance is computed as a sum of absolute terms). This
exercise highlights the primary role of the choice of the correct DoE to obtain convincing
results.

4 Concluding remarks
This paper presents and illustrates a protocol proposed as an alternative to Monte Carlo
exploration of computer simulations that involve many parameters, and a high computational
cost. We give guidelines for the implementation of a parsimonious method for sampling the
parameter space, and reliably predicting the response surface over the whole experimental
domain. We show, using two example models, that such a parsimonious protocol can give very
interesting results. In our first application, for example, we show that 10, 000 Monte-Carlo
simulations are necessary to capture all the effects that we can capture, with the proposed
method, using only 85 simulations. We also indicate how it can be combined for searching
a specific configuration of the model that would comply with a given criteria (stylized facts,
or optimal economic performance). Many agent based models in economics, management,
and in other social sciences could hence benefit from such an approach.
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cov. matèrn Gaussian cov. Exp. cov.
µ̄ 1st order µ̄ 1st order µ̄ 1st order

RMSE 2.757 2.411 2.545 2.134 5.534 4.595
Q2 0.852 0.9 0.901 0.921 0.547 0.772

(a) Comparison and selection of kriging models
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(b) Sensitivity analysis of the selected meta-model
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(c) Estimated response surfaces of the kriging meta-model, the other 5 parameters
are set at the middle of their variation domains. Pmut on the x-axis, γGA on the
y-axis, for three values of Pim = {0, 0.15, 0.25}.

Figure 8: Robustness check: kriging meta-model based on a random
33 points DoE.
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A DoE

exp. τim% n σ2

g
ε B g %

1 0.125 32 12 1 1.5 1.5
2 0.0625 4 12 1 1 0.75
3 0.0625 8 4 1 2.5 1.25
4 0.125 16 8 1000 2.5 0.5
5 0.25 32 8 0.8 2 0.25
6 0.05 4 8 1000 1 1.25
7 0.25 4 12 1 3 0.75
8 0.25 32 12 1000 3 1
9 0.25 8 8 1 2.5 1

10 0.25 2 4 1 3 0.25
11 0.5 16 4 1 3.5 1
12 0.5 8 12 1000 2 0.5
13 0.25 8 8 0.8 2 1.25
14 0.125 2 8 1000 2.5 1.5
15 0.0625 16 8 0.8 3.5 0.5
16 0.125 16 4 1 1.5 1
17 0.125 4 8 0.8 1.5 0.75

Table 3: DoE, Nelson & Winter (1982), k = 6 factors, n = 17 experiments

exp. δ Pim Pco Pmut fL hid γGA epoch
DoE

1 1.00 0.02 0.20 0.05 11 3 21 34
2 0.91 0.25 0.09 0.08 6 2 23 29
3 0.88 0.11 0.37 0.04 0 3 22 21
4 0.58 0.22 0.40 0.09 11 2 25 22
5 0.94 0.01 0.21 0.05 8 3 13 37
6 0.97 0.23 0.16 0.06 5 2 6 46
7 0.70 0.12 0.39 0.06 0 3 12 47
8 0.55 0.17 0.38 0.08 11 3 7 50
9 0.67 0.06 0.13 0.11 9 3 1 26

10 0.76 0.16 0.15 0.14 3 3 4 31
11 0.73 0.05 0.31 0.19 4 2 5 25
12 0.79 0.18 0.28 0.19 9 4 15 32
13 0.61 0.04 0.12 0.12 7 2 29 43
14 0.85 0.15 0.18 0.18 2 3 28 42
15 0.64 0.05 0.35 0.18 5 2 20 43
16 0.82 0.16 0.26 0.20 10 4 17 40
17 0.53 0.13 0.23 0.11 6 3 16 35
18 0.05 0.23 0.25 0.16 2 3 10 36
19 0.14 0.00 0.36 0.13 6 4 8 41
20 0.17 0.14 0.08 0.17 12 3 9 49
21 0.47 0.03 0.05 0.12 1 4 6 48
22 0.11 0.24 0.24 0.16 4 3 18 33
23 0.08 0.02 0.29 0.15 7 4 25 24
24 0.35 0.13 0.06 0.15 12 3 19 23
25 0.50 0.08 0.07 0.13 1 4 24 20
26 0.38 0.19 0.32 0.10 3 3 30 44
27 0.29 0.09 0.30 0.07 9 3 27 39
28 0.32 0.20 0.14 0.02 8 4 26 45
29 0.26 0.07 0.17 0.02 3 2 16 38
30 0.44 0.21 0.33 0.09 5 4 2 27
31 0.20 0.10 0.27 0.03 10 3 3 28
32 0.41 0.20 0.10 0.03 8 4 11 28
33 0.23 0.09 0.19 0.01 2 2 14 30

Additional points for (external) validation
1 0.75 0.21 0.10 0.06 7 3 5 39
2 0.86 0.15 0.35 0.03 6 2 19 42
3 0.21 0.12 0.15 0.07 10 2 13 25
4 0.52 0.06 0.18 0.09 3 3 16 46
5 0.41 0.09 0.27 0.04 9 4 23 36
6 0.30 0.19 0.31 0.06 2 3 26 28
7 0.63 0.04 0.23 0.02 4 4 9 31

Table 4: DoE, oligopoly model with learning,
k = 8 factors, n = 33 experiments
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B R codes for kriging

# X is in data.frame format, and contains the DoE (n=33 rows, k=8 columns), column names are probImit,
#probMut, probCO, forwardLook, gaRate, learnRate, hidNodes, numEpoch.
# XValid is in data.frame format, and contains the values of the factors at the additional points (n=7 rows,
#k=8 columns)
# y is in data.frame format, and contains the values of the response d at the 33 points of the DoE, averaged
#over the 20 replications (column is named totDist, 33 rows)
# yValid is in data.frame format, and contains the values of the response at the 7 additional points (averaged
#over the 20 replications ).
# DataVar is a column of n=33 rows, with contains the variance of the response d over the 20 replications of
#each 33 experiments.
# Downloading kriging packages (see Roustant et al. (2010))
library(DiceKriging)
library(DiceEval)
library(DiceOptim)
library(rgenoud)

# Creating a function calculQ to compute the Q2 coefficient for any kriging model m:
calculQ <− function (m) { error <− (leaveOneOut.km(m, type="UK")$mean − y)^2
x <− 1
cumul <− 0
while (x < 34) {
cumul <− cumul + error[x,]
x <− x +1
}
cumul
devi <− (y − mean(y))^2
denom <− 0
i <− 1
while (i < 34) {
denom <− denom + devi[i,]
i <− i +1
}
Q2 <− 1 − (cumul / denom)
Q2
}

# Estimating the 6 kriging models and corresponding Q2 with:
#mean (ordinary kriging) and matern 5/2 covariance:
m1 <− km(~ 1, design=X, response=y, covtype="matern5_2", noise.var=DataVar$totDist)
m1
calculQ(m1)
#a first−order polynomial trend and matern 5/2 covariance:
m2 <− km(~ ., design=X, response=y, noise.var=DataVar$totDist, covtype="matern5_2")
m2
calculQ(m2)
#mean (ordinary kriging) and gaussian covariance:
m3 <− km(~ 1, design=X, response=y, covtype="gauss", noise.var=DataVar$totDist)
m3
calculQ(m3)
#a first−order polynomial trend and gaussian covariance:
m4 <− km(~ ., design=X, response=y, noise.var=DataVar$totDist, covtype="gauss")
m4
calculQ(m4)
#mean (ordinary kriging) and exponential covariance:
m5 <− km(~ 1, design=X, response=y, covtype="exp", noise.var=DataVar$totDist)
m5
calculQ(m5)
#a first−order polynomial trend and exponential covariance:
m6 <− km(~ ., design=X, response=y, noise.var=DataVar$totDist, covtype="exp")
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m6
calculQ(m6)

# Computing the associated RMSE of the 6 kriging models
test1 <− predict(m1, newdata=XValid, type="UK")
test2 <− predict(m2, newdata=XValid, type="UK")
test3 <− predict(m3, newdata=XValid, type="UK")
test4 <− predict(m4, newdata=XValid, type="UK")
test5 <− predict(m5, newdata=XValid, type="UK")
test6 <− predict(m6, newdata=XValid, type="UK")
RMSE1 <− RMSE(Valid$totDist, test1$mean)
RMSE2 <− RMSE(Valid$totDist, test2$mean)
RMSE3 <− RMSE(Valid$totDist, test3$mean)
RMSE4 <− RMSE(Valid$totDist, test4$mean)
RMSE5 <− RMSE(Valid$totDist, test5$mean)
RMSE6 <− RMSE(Valid$totDist, test6$mean)

# The selected model is m3 (ordinary kriging with Gaussian correlation), computing m3 sensitivity analysis :
library( sensitivity )
kriging .mean3 <−function(X,m3) predict.km(m3,X,"UK",se.compute=FALSE)$mean
SA.metamodel3 <−fast99(model=kriging.mean3,factors=c("probImit", "probMut", "probCO",
"forwardLook", "gaRate", "learnRate", "hidNodes", "numEpoch"), q.arg=list(list(min=0,max=0.1),
list (min=0.01, max=0.1), list(min=0.05, max=0.4), list(min=0, max=12), list(min=1, max=30),
list (min=0.05, max=1), list(min=2, max=4), list(min=20, max=50)), m=m3)

plot(SA.metamodel3)

# Drawing the response surface of the kriging model m3, as a function of probMut and learnRate values)
n.grid <− 12
x.grid <− seq(0.01,0.1,length=n.grid)
y.grid <− seq(0.01,1,length=n.grid)
X.grid <− expand.grid(probImit=0.05,probMut=x.grid,probCo=0.4, fL=6, gaRate=15, learnRate=y.grid,
hidNodes=3, numEpoch=30)
pred.m3 <− predict(m3, X.grid, "UK")
contour(x.grid, y.grid, matrix(pred.m3$mean, n.grid, n.grid), 12, xlab=expression(prob[im]), ylab=
expression(delta), main="Kriging␣mean␣(OK)")

#optimizing the kriging model m3:
x_star <− max_EI(m3, lower=c(0,0.01,0.05, 0, 1, 0.01, 2, 20), upper=c(0.25,0.2, 0.4, 12, 30, 1, 4, 50),
control =list(pop.size=100, max.generations=50, wait.generations=50))
opt1 <− data.frame(x_star$par[1], x_star$par[2], x_star$par[3], x_star$par[4], x_star$par[5],
x_star$par[6], x_star$par[7], x_star$par[8])
opt1
pred.m3 <− predict(m3, opt1, "SK")
pred.m3$mean
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